
Dynamics of forest fires as a directed percolation model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1986 J. Phys. A: Math. Gen. 19 L289

(http://iopscience.iop.org/0305-4470/19/5/013)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 19:28

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/19/5
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 19 (1986) L289-L293. Printed in Great Britain 
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Abstract. Forest fires under directional constraints, such as wind or local topography, 
generalise the bond percolation problem of the symmetrical fires. We analyse the mass M 
and the radius of gyration R,  of the burning tree clusters as a function of time. M - t n  
and R, - t p ,  with a and p being the fractal exponents. 

Forest fires are a very descriptive model for two-dimensional percolation [ l]  and as 
such have found their way into a recent textbook [2]. A particularly picturesque version 
of the problem consists in taking a two-dimensional regular lattice and igniting one 
starting site. Then the fire may propagate to nearest neighbours with given probabilities. 
For simplicity one starts with a discrete-time model [l] for which in a given time 
interval each ignited tree burns completely. Then, at each given time one has burnt-out 
trees, burning trees, warm trees (these are unburnt nearest neighbours of the burning 
ones) and the remaining unbumt trees. After a time interval the burning trees are 
burnt-out and at this time a subset of the warm trees gets ignited. For each tree of 
this subset we determine through a random number whether it is ignited or not. Notice 
that a tree not ignited in this step may become a warm tree again and be ignited at a 
later stage. As is obvious, forest fires are a special model for general epidemic processes 
[3,4], and the applications range from the spreading of diseases to the kinetics of 
formation of branched polymers [ 51. 

Particularly interesting in the forest fire problem is the dynamical aspect, i.e. the 
fact that the dynamical pattern develops in time. This feature enhances the richness 
of the picture, since all aspects common to random walks in restricted geometries [6], 
such as persistence lengths, anisotropies [7] and processes in continuous time [8,9] 
may enter. Also, forest fires show interesting bond and site percolation aspects [lo]. 
As we will show in the following, the inclusion of the anisotropy (i.e. wind) already 
leads to dynamical patterns with no obvious static percolative counterpart. 

To show this we assign direction-dependent probabilities for the ignition, and have 
as a special case the isotropic situation. We found it convenient to work on the square 
lattice, but we have also used a triangular geometry for comparison to reference [l]. 
We have taken lattices of 1000 x 1000 sites, on which, for each set of parameters, 5000 
different realisations of the fire starting from the origin were simulated. Each realisation 
stopped either by its own attrition or because the rim of the lattice was reached. We 
analysed the onset of percolation, i.e. the possibly unlimited spread of the fire in terms 
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of two criteria: ( a )  to reach the rim in half of all realisations and ( b )  the fractal 
(time-scaling) form of the burnt-out patterns. 

Consider first the isotropic case. We note that for the fully developed burnt-out 
cluster all internal bonds and all bonds connecting the cluster to its surroundings have 
been questioned exactly once, from the burning to the warm trees, and have propagated 
(or not) the fire with probability p (resp. 1 - p ) .  Since for the final pattern the order 
in which this questioning took place is immaterial, the set of clusters obtained by either 
burning isotropically or by bond percolation arguments are identical. Hence the critical 
probabilities are the same in the two problems. Therefore the isotropic fire on the 
square lattice has a critical value for ignition p c  = 0.5. Both criteria ( a )  and ( b )  display 
this value nicely. Out of 5000 realisations the rim was reached 2173 times for p = 0.499, 
2451 times for p = 0.5 and 2738 times for p = 0.501. As an example for a larger deviation 
from p c ,  for p = 0.49 the rim was reached only 1049 times. 

The situation is also borne out by the study of the scaling relations of the ensemble 
averaged mass M of the burnt-out clusters (total number of trees) and by their radius 
of gyration R,, as a function of t .  One assumes scaling at percolation; thus 

where t is the number of elapsed time intervals, ( ) is the configurational average and 
the sums 2 extend over the burnt-out sites at t. 

1 c- 
10 lo2 i o 3  

t 
Figure 1. Scaling of the radius of gyration, R,, with time on a square lattice near the 
percolation threshold. The curves correspond top = 0.49,0.499,0.5 and 0.501, as indicated. 
For display purposes, all R,  are normalised to their values at t = 11. 
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In figure 1 the temporal behaviour of R, is displayed as a log-log plot. Care has 
been taken to consider only such times at which the rim was not yet reached in any 
realisation, just to ensure that no finite-size effects occur. As is evident, the scaling 
behaviour is excellent for p = 0.5 and deviations from linearity are already felt at 
p = 0.49 and p = 0.51. Thus temporal scaling is a very good indicator for pc in the 
symmetric case. We find at p c =  0.5 as fractal parameters in (1) and (2), a = 1.57 and 
p = 0.78. 

To make the connection with the results of [l], we have also investigated the 
situation on the triangular lattice. Out of 5000 trials the rim was reached in 2384 cases 
for p = 0.3470, in 2463 cases for p = 0.3473 and in 2554 cases for p = 0.3476. The 
agreement with the exactly known value for bond percolation on the triangular lattice, 
p c  = 2 sin ( T/ 18) = 0.3472, is really very good. As a comparison, for the approximate 
value p = f = 0.333 the rim was never reached in 5000 realisations. For M and R, the 
findings for the triangular lattice around p c  = 0.3473 closely reproduce those for the 
square lattice around p c  = 0.5 and we find a = 1.59 and p = 0.79. In both cases we find 
that the ratio a / p  is around 2, different from the static fractal dimension which is 
about 1.9. We also note that our a y l u e  is substantially lower than the d parameters 
reported for bond percolation [ 113, d - 1.675 when the chemical distance, and not the 
true time development, are used to measure M. 

A possible reason for this discrepancy is the different time evolution considered 
here and in.[ 111. There a cluster is given and the sites are assigned a time corresponding 
to the shortest path (chemical distance) from an origin. In our case, this is a lower 
bound for the actual ignition time, since here it may take several attempts until igniting 
a tree. Our patterns, viewed as a function of time, are thus less dense. 

Forest fires are much influenced by wind. To simulate this aspect on the square 
lattice, we assign different ignition probabilities to the forward, lateral and backward 
directions, an aspect related to directed percolation [12, 131. In the figures the forward 
direction is taken to the right. Since in the isotropic case at percolation these two 
values add to unity, we took as probabilities to ignite in forward (resp. backward) 
directions pF (resp. 1 - pF) and chose pF = 0.6, 0.7, 0.8 and 0.9. We are now able to 
search for critical behaviour by varying the probabilities pL in the two lateral directions, 
which are taken equal. 

Table 1. Critical probabilities pL for forest fires with wind. 

Forward Backward Lateral 
PF -PF PP 

0.5 0.5 0.5 
0.6 0.4 0.459 
0.7 0.3 0.385 
0.8 0.2 0.287 
0.9 0.1 0.160 

In table 1 we present the critical pL values obtained by simulation, where we use 
criterion (a), to reach the rim of the lattice in half of all cases. As expected intuitively, 
an increase in anisotropy reduces the value for pr or, expressed differently, for 
preassigned lateral ignition probabilities increasing the strength of the wind renders a 
previously subcritical situation critical. 
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Figure 2. ( a )  Spreading of fire at the percolation threshold pF = 0.7. The forward direction 
is to the right and the origin is indicated. The picture is a cut-out of the 1000 x 1000 matrix 
after reaching the border of the indicated 5 9 x  59 submatrix. ( b )  Same realisation as in 
( a ) ,  at a later time, when the fire reaches the l O O O x  1000 rim. 
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Figure 3. Same as in figure 1 for the anisotropic situation pF=0 .7  around the critical 
threshold. The lateral ignition probabilities are p L  = 0.365, 0.375, 0.385 and 0.395, as 
indicated. 
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A point to be mentioned is that several realisations of fires using the same parameters 
may lead to widely distinct patterns. One may think that strong winds will act very 
directionally (and thus lead to rather regular shapes). Indeed, already for pF = 0.6 the 
forward rim was reached first in all 5000 realisations. However, the fires do not 
necessarily propagate as conical forms. A not too unusual pattern of the fire for pF = 0.7 
is given in figures 2(a) and (b), which show the situation after crossing the borderline 
of the 59 x 59 lattice and after reaching the rim of the total lattice, respectively. 

To round out the picture we have also analysed the scaling behaviour for M and 
R,  with t. We again find scaling, albeit at some lower lateral pL values than the ones 
inferred from the criterion to reach the rim. Thus for pF=0.6 the pL value at which 
R, scales is 0.446 and for pF = 0.7 it is 0.370. To display how well temporal scaling is 
obeyed, we present in figure 3 the situation for pF = 0.7, with pL varying between 0.365 
and 0.395. At pL= 0.370 we find as fractal parameters (Y = 1.26 and p = 0.79. As a 
final remark we note that, distinct from the symmetrical spread of the fire, the asym- 
metrical situation is not readily amenable to the previous bond percolation argument, 
since now even assuming directed bonds, the order in which the two sites of each bond 
are questioned matters. 

In summary, we have analysed the forest fire problem both in the presence and in 
the absence of anisotropies (wind). In all cases the patterns obtained scale with time 
only for ignition probabilities very close to the critical ones. Due to its dynamical 
facets the problem may be enriched by the inclusion of further aspects, such as 
continuous times. 

Technical assistance by A Wojczinski, discussions with Dr N Jan, and the support of 
the Deutsche Forschungsgemeinschaft and of the Fonds der Chemischen Industrie, are 
gratefully acknowledged. The calculations were performed on the Amdahl 470/V7B 
computer of the Computing Center of the Technical University of Braunschweig, for 
whose service and help the authors are grateful. 

References 

[ l ]  MacKay G and Jan N 1984 1. Phys. A:  Math. Gen. 17 L757 
[2] Stauffer D 1985 Introduction to Percolation Theory (London: Taylor and Francis) 
[3] Grassberger 1983 Math. Biosci. 62 157 
[4] Cardy J L and Grassberger P 1985 J. Phys. A:  Math. Gen. 18 L267 
[5] Alexandrowicz Z 1985 Phys. Reo. Lerr. 54 1420 
[6] Weiss G H and Rubin R J 1983 Ado. Chem. Phys. 52 363 
[7] Argyrakis P, Blumen A, Kopelman R and Zumofen G 1984 1. Phys. Chem. 88 1973 
[8] Blumen A and Zumofen G 1982 J. Chem. Phys. 77 5127 
[9] Blumen A, Klafter J, White B and Zumofen G 1984 Phys. Rev. Lett. 53 1301 

[lo] Albinet G, Stauffer D and Searby G 1985 J. Physique submitted 
[ l l ]  Grassberger P 1985 J. Phys. A:  Math. Gen. 18 L215 
[12] Redner S 1983 Percolation Structures and Processes ed G Deutscher, R Zallen and J Adler (Bristol: 

[13] Kinzel W 1983 Percolation Structures and Processes ed G Deutscher, R Zallen and J Adler (Bristol: 
Adam Hilger) p447 

Adam Hilger) p 425 


